
OPERATIONS RESEARCH
Vol. 59, No. 4, July–August 2011, pp. 973–985
issn 0030-364X �eissn 1526-5463 �11 �5904 �0973 http://dx.doi.org/10.1287/opre.1110.0944

© 2011 INFORMS

Robust Optimization Made Easy with ROME

Joel Goh
Stanford Graduate School of Business; NUS Business School, National University of Singapore,

Singapore 119245, Republic of Singapore, joelgoh@stanford.edu

Melvyn Sim
NUS Business School and NUS Risk Management Institute, National University of Singapore,

Singapore 119245, Republic of Singapore, dscsimm@nus.edu.sg

We introduce ROME, an algebraic modeling toolbox for a class of robust optimization problems. ROME serves as an
intermediate layer between the modeler and optimization solver engines, allowing modelers to express robust optimization
problems in a mathematically meaningful way. In this paper, we discuss how ROME can be used to model (1) a service-
constrained robust inventory management problem, (2) a project-crashing problem, and (3) a robust portfolio optimization
problem. Through these modeling examples, we highlight the key features of ROME that allow it to expedite the modeling
and subsequent numerical analysis of robust optimization problems. ROME is freely distributed for academic use at
http://www.robustopt.com.

Subject classifications : robust optimization; algebraic modeling toolbox; MATLAB; stochastic programming; decision
rules; inventory control; PERT; project management; portfolio optimization.

Area of review : Computing and Information Technologies.
History : Received July 2009; revision received April 2010; accepted August 2010.

1. Introduction
Robust optimization is an approach for modeling optimiza-
tion problems under uncertainty, where the modeler aims
to find decisions that are optimal for the worst-case realiza-
tion of the uncertainties within a given set. Typically, the
original uncertain optimization problem is converted into
an equivalent deterministic form (called the robust counter-
part) using strong duality arguments and then solved using
standard optimization algorithms. Soyster (1973), Ben-Tal
and Nemirovski (1998), and Bertsimas and Sim (2004)
describe how to explicitly construct these robust counter-
parts for uncertainty sets of various structures. A significant
extension on the scope of robust optimization was made by
Ben-Tal et al. (2004), who considered the problem of robust
decision making in a dynamic environment where uncer-
tainties are progressively revealed. They described how
adjustable robust counterparts (ARCs) can be used to model
recourse decisions, which are decisions made after some
or all of the uncertainties are realized. In the latter part of
the same paper, they also specialized the ARC to affinely
adjustable robust counterparts (also termed linear decision
rules, LDRs), where decision variables are affine functions
of the uncertainties, and showed that solving for such deci-
sion rules under the worst-case realization of uncertainties
is typically computationally tractable.

Classical robust optimization problems are technically a
special case of minimax stochastic programs, the study of
which was pioneered by Žáčková (1966) and subsequently
furthered in other works such as Breton and El Hachem
(1995), Delage and Ye (2010), Dupačová (1987), Shapiro

and Ahmed (2004), and Shapiro and Kleywegt (2002). In
this setting, uncertainties are modeled as having a distribu-
tion that is not fully characterized, known only to lie in a
family of distributions. Optimal decisions are then sought
for the worst-case distribution within the family. Solutions
are therefore distributionally robust toward ambiguity in the
uncertainty distribution. Distributional families are typically
defined by classical properties such as moments or support,
or more recently introduced distributional properties such as
directional deviations (Chen et al. 2007). Frequent choices
of families of distributions used by researchers are listed in
Dupačová (2001). Throughout this paper, the term “robust
optimization problem” will be used to refer to a problem in
this generalized distributionally robust setting.

A recent body of research in robust optimization focuses
on adapting the methodology of Ben-Tal et al. (2004) to
obtain suboptimal, but ultimately tractable, approximations
of solutions to such problems by restricting the structure of
recourse decisions to simple ones, such as LDRs. A com-
mon theme in this body of work is a search for techniques
to relax the stringent affine requirement on the recourse
decisions to allow for more flexible, but tractable, deci-
sion rules. Such approaches include the deflected and seg-
regated LDRs of Chen et al. (2008), the extended AARC
of Chen and Zhang (2009), the truncated LDR of See and
Sim (2009), and the bideflected and (generalized) segre-
gated LDRs of Goh and Sim (2010).

Despite these recent advances in robust optimization the-
ory and techniques, there has been a conspicuous lack of
accompanying technology to aid the transition from theory

973

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
974 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

to practice. Furthermore, as we will illustrate in §2, this
problem is compounded by the fact that the deterministic
forms of many robust optimization models are exceedingly
complex and tedious to model explicitly. We believe that
the development of such technology will firstly enable
robust optimization models to be applied practically, and
secondly, allow for more extensive computational tests on
theoretical robust optimization models.

We aim to contribute toward the development of such a
technology by introducing an algebraic modeling toolbox1

for modeling robust optimization problems, named Robust
Optimization Made Easy (ROME), which runs in the MAT-
LAB environment. This paper covers the public release
version of ROME, version 1.0 (beta) and its subversions.
Using ROME, we can readily model and solve a variety of
robust optimization problems. In particular, ROME allows
users to use and manipulate decision rules such as LDRs,
as well as LDR-based decision rules such as bideflected or
segregated LDRs within their robust optimization models
with relative ease. Section 5 describes the general class of
problems that ROME is designed to solve, and readers are
referred to Goh and Sim (2010) for a deeper discussion of
the general problem and its theoretical properties.

A related problem class to the generic robust optimiza-
tion problem handled in ROME is the class of multistage
stochastic recourse programs (MSRPs). Both problem
classes involve a progressive revelation of information, and
decision making that depends on the revealed information.
A common technique used to model an MSRP is the use
of scenario trees to exhaustively represent its probabilis-
tic outcomes, and recent work (e.g., by Fourer and Lopes
2009, Kaut et al. 2008, Valente et al. 2009) has focused
on developing modeling tools to enhance existing algebraic
modeling languages with the capability of processing and
manipulating such scenario trees. In contrast, ROME does
not employ scenario generation, but instead uses robust opti-
mization theory to convert uncertain optimization models
(input by a user) into their robust counterparts, which are
then passed to numerical solver packages. In this regard,
ROME parallels the functionality of the deterministic equiv-
alent generator in the management system for stochastic
decompositions described by Fourer and Lopes (2006).

ROME’s core functionality involves translating mod-
eling code, input by the user, into an internal struc-
ture in ROME, which is then marshaled into a solver-
specific input format for solving. At present, users have a
choice of the following solvers in ROME: ILOG CPLEX
(IBM 2011), MOSEK (MOSEK ApS 2011), and SDPT3
(Toh et al. 1999). ROME calls both MOSEK and SDPT3
solvers through their prepackaged MATLAB interfaces,
and CPLEX through the CPLEXINT interface (Baotic and
Kvasnica 2006). By design, ROME’s core functionality is
essentially independent from the choice of solver used,
allowing users to use whichever solver they are most famil-
iar with, using the same modeling code in ROME. Due to
the internal conversions performed by ROME, for a solver

to be compatible with ROME, it has to at least be able to
solve second-order conic programs (SOCPs).

Because ROME is built in the MATLAB environment,
modelers are able to take advantage of the strength of MAT-
LAB’s numerical computational framework to prepare data,
analyze optimization results, and integrate ROME more
easily into their applications. Moreover, ROME is designed
using similar syntax and constructs as those of MATLAB,
so that users already familiar with MATLAB have a shal-
low learning curve in using ROME. The trade-off is that
ROME’s restriction to the MATLAB environment limits its
flexibility in model building and expression, and lacks the
versatility of specialized algebraic modeling languages such
as AMPL (Fourer et al. 1990, 2002) or GAMS (Brooke
et al. 1997).

ROME is similar to other MATLAB-based algebraic
modeling toolboxes for optimization, such as YALMIP
(Löfberg 2004, 2008), CVX (Grant and Boyd 2008, 2011),
or TOMLAB (Holmström 1999), in that it aims to serve
as an intermediate layer between the modeler and underly-
ing numerical solvers. Our design goal with ROME is also
similar: we aim to make the models in ROME as natural
and intuitive as their algebraic formulations. A fundamen-
tal distinction between ROME and these other toolboxes is
that robust optimization models typically cannot be directly
modeled in these other toolboxes, with the notable excep-
tion of YALMIP, which allows users to model robust coun-
terparts through uncertainty sets. In this respect, ROME’s
key distinction with YALMIP lies in ROME’s compara-
tively richer modeling of uncertainties, not just through
their support, but also through other distributional proper-
ties such as moments and directional deviations. In addi-
tion, decision rules are modeled in ROME very naturally,
and ROME even incorporates more complex piecewise-
linear decision rules based on the bideflected linear decision
rule (Goh and Sim 2010). The trade-off is that, compared
to these other toolboxes, ROME is narrower in scope in
terms of the different types of deterministic optimization
problems that it can model.

In this paper, we discuss several detailed modeling exam-
ples of robust optimization problems and describe how
these problems have a natural representation in ROME.
Through these examples, we demonstrate key features that
make ROME amenable to modeling such problems. The
User’s Guide to ROME (Goh and Sim 2009) contains a
comprehensive description of ROME’s functionality and
usage, as well as installation instructions. An electronic
companion to this paper is available as part of the online
version that can be found at http://or.journal.informs.org/.

Notations. We denote a random variable by the tilde
sign, i.e., x̃. Bold lower-case letters such as x represent vec-
tors, and the upper-case letters such as A denote matrices.
In addition, x+ ≡ max 8x109 and x− ≡ max 8−x109. The
same notation can be used on vectors, such as y+ and z−,
indicating that the corresponding operations are performed

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 975

componentwise. Also, we will denote by 6N 7 the set of
positive running indices to N , i.e., 6N 7 = 81121 0 0 0 1N 9,
for some positive integer N . For completeness, we assume
607= ∅. We also denote with a superscripted letter “c” the
complement of a set, e.g., I c. We denote by e the vector
of all ones, and by ei the ith standard basis vector. Matrix/
vector transposes are denoted by the prime (′) symbol,
e.g., x′y denotes the inner product between two column
vectors x and y. The expectation of a random variable z̃
with distribution � is denoted E�4z̃5 and its covariance
matrix Cov�4z̃5. Finally, if z̃ has a distribution �, known
only to reside in some family �, we adopt the convention
that (in)equalities involving z̃ hold almost surely for all
� ∈ �, i.e., for some constant vector c, z̃> c ⇔�4z̃> c5=

1 ∀� ∈ �.

2. Motivation
The motivation for our work can be illustrated by a simple
example. Consider the following simple robust optimization
problem, an uncertain linear program (LP), with decision
variables x and y, and a scalar uncertainty z̃:

max
x1 y

x+ 2y

s.t. z̃x+ y 6 1
x1 y > 01

(1)

where the only distributional information we have about the
scalar uncertainty z̃ is that z̃ ∈ 6−1117 almost surely. This
may be interpreted as an LP with some uncertainty in a
coefficient of its constraint matrix. To solve this problem
numerically, we have to convert it into its robust counterpart,

max
r1 s1 x1 y

x+ 2y

s.t. r + s + y 6 1
r − s − x = 0
r1 s1 x1 y > 01

(2)

and solve it by standard numerical solvers.
For most readers, the equivalence between (1) and (2)

should not be immediately evident from the algebraic for-
mulations. Indeed, converting from (1) to (2) requires refor-
mulating the uncertain constraint of the original problem
into an embedded LP, and invoking a strong duality argu-
ment (Ben-Tal and Nemirovski 1998, Bertsimas and Sim
2004). Furthermore, (2) has the added auxiliary variables r
and s, which obscures the simplicity and interpretation of
the original model (1).

This simple example exemplifies the problem of using
existing deterministic algebraic modeling languages for
robust optimization. To solve a robust optimization problem,
the modeler has to convert the original uncertain optimiza-
tion problem into its deterministic equivalent, which may
be structurally very different from the original problem and
have many unnecessary variables. Furthermore, for more

complex problems, e.g., models that involve recourse, the
conversion involves significantly more tedium, and tends to
impede, rather than promote, intuition about the model.

For us, a key design goal in ROME was to build a mod-
eling toolbox where robust optimization problems such as
(1) can be modeled directly, without the modeler having to
manually perform the tedious and error-prone conversion
into its deterministic equivalent (2). This and other related
mechanical conversions are performed internally within the
ROME system to allow the modeler to focus on the core
task of modeling a given problem.

3. Nonanticipative Decision Rules
A distinctive feature in ROME is the use of decision rules
to model recourse decisions. In this section, we describe
general properties of decision rules and the concept of
nonanticipativity. We also introduce linear decision rules,
which are fundamental building blocks in ROME.

We consider decision making in a dynamic system evolv-
ing in discrete time, where uncertainties are progressively
revealed, and decisions, which may affect both system
dynamics and a systemwide objective, are also made at
fixed time epochs. At a given decision epoch, a decision
rule is a prescription of an action, given the full history of
the system’s evolution until the current time. Any meaning-
ful decision rule in practice should therefore be functionally
dependent only the uncertainties that have been revealed by
the current time. Such decision rules are said to be adapted
or non-anticipative.

Assuming throughout this section that we have N model
uncertainties, we may formally let I ⊆ 6N 7 represent the
index set of the uncertainties that are revealed by the cur-
rent time, which we will term an information index set.
A generic �m-valued nonanticipative decision rule belongs
to the set

Y4m1N 1 I5

≡

{

f 2 �N
→�m2 f

(

z+
∑

iyI

�ie
i

)

= f4z51 ∀� ∈�N

}

1 (3)

where the first two parameters of Y4 · 5 are dimensional
parameters, and the last parameter I captures the functional
dependence on the revealed uncertainties.

However, searching for a decision rule in Y4 · 5 requires
searching over a space of functions, which, in general,
is computationally difficult. The approach taken by recent
works (Ben-Tal et al. 2006, 2004; Chen and Zhang 2009;
Goh and Sim 2010) has been to restrict the search space
to linear decision rules (LDRs), functions that are affine in
the uncertainties. The LDRs are also required to satisfy the
same nonanticipative requirements. Formally, a �m-valued
LDR belongs to the set

L4m1N 1 I5

≡
{

f 2 �N
→�m2 ∃y0

∈�m1 Y ∈�m×N 2 f4z5= y0
+Yz1

Yei = 01∀ i ∈ I c
}

0 (4)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
976 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

Observe that by construction, L4m1N 1 I5 ⊂ Y4m1N 1 I5.
A generic �m-valued LDR x4z̃5 can be represented in closed
form as x4z̃5 = x0 + Xz̃, where x0 ∈ �m, X ∈ �m×N . If, in
addition, x4z̃5 has information index set I , then the columns
of X with indices in the set I c must be constrained to be all
zeros. The LDR coefficients x0, X correspond to decision
variables in standard mathematical programming, which are
the actual quantities that are optimized in a given model.

Intuitively, one might expect that by restricting deci-
sion rules to LDRs, the modeler may suffer a penalty on
the optimization objective. For a class of multistage robust
optimization problems, Bertsimas et al. (2010) show that
LDRs are, in fact, sufficient for optimality. However, in
general, LDRs can be further improved upon. For exam-
ple, Chen et al. (2008) proposed different piecewise-linear
decision rules to overcome the restrictiveness imposed by
LDRs. This approach was later generalized by Goh and
Sim (2010) to bideflected linear decision rules (BDLDRs).
These works showed that by searching over a larger space
(of piecewise-linear functions), and paying a (typically)
minor computational cost, the modeler can potentially
improve the quality of the decision rule.

Although a detailed discussion of the theory of BDLDRs
is beyond the scope of this paper (an in-depth analysis is
provided in Goh and Sim 2010), we will highlight the key
principles involved in their construction and usage, because
BDLDRs are central to ROME’s design and functionality.
A generic �m-valued BDLDR x̂4z̃5 may be expressed as
x̂4z̃5 = w0 + Wz̃ + P

(

y0 +Yz̃
)−

, and comprises a linear
part, w0 + Wz̃, and deflected part, P

(

y0 +Yz̃
)−

. Similar
to the LDR, w0 ∈ �m and W ∈ Rm×N are decision vari-
ables in the model. However, P ∈�m×M is a constant coef-
ficient matrix, that is constructed on the fly, based on the
structure of the model constraints and objective. In turn,
its inner dimension, M , is also dependent on the problem
structure. The construction of P involves solving a series
of secondary linear optimization problems based on the
problem structure (details are given in Goh and Sim 2010).
Finally, y0 ∈�M and Y ∈�M×N are also decision variables
that are solved for in the model. Notice that if I represents
the information index set of x̂4z̃5, the resulting decision
variables 4w01W1y01Y5 must also obey similar structural
constraints as the LDR. However, in the BDLDR case, we
have an additional layer of complexity, where the algorithm
that constructs P is also dependent on the structure of I .

The benefit of using BDLDRs, (as compared to LDRs),
to model decision rules is twofold. First, the feasible region
is enlarged by searching over a larger space of piecewise-
linear decision rules. Second, when worst-case expectations
are taken over the BDLDR, distributional information on
z̃ leads to good bounds on the nonlinear deflected compo-
nent, which improves the optimization objective. The cost
of using BDLDRs is an added computational cost of solv-
ing the secondary linear programs, which is typically quite
minor, and a possible increase in complexity of the final

deterministic equivalent (from an LP to a SOCP) when con-
structing bounds on the nonlinear terms.

For a given LDR, although the decision variables from
a numerical solver’s perspective are x0 and X, the object
that is meaningful from a modeling perspective is the affine
function x4z̃5. In a modeling system catering to robust opti-
mization applications, users should be able to work directly
with x4z̃5 and essentially ignore its internal representation.
For BDLDRs, the case is even stronger. The onerous task
of analyzing the problem structure, solving the secondary
linear programs, and constructing the appropriate bounds,
should be handled internally by the modeling system, and
not by the modeler. Such considerations were fundamental
to ROME’s design. Through the examples presented in §4,
we illustrate the utility of this design choice for modeling
robust optimization problems.

4. Modeling Examples
In this section we discuss several robust optimization prob-
lems and how they can be modeled algebraically, and also
how their algebraic formulations can be naturally expressed
within ROME. Because the emphasis in this section is on
ROME’s utilty as a modeling tool, we will only present the
relevant sections of algebraic formulations and the ROME
models. For reference, we have included full algebraic and
ROME models in the appendices. The line numbers for
the code excerpts in this section correspond to those in the
appendices for ease of reference.

4.1. Service-Constrained Inventory Management

4.1.1. Description. We consider a distributionally ro-
bust version of a single-product, single-echelon, multi-
period inventory management problem. Our model differs
from the classical treatment of inventory management in
the literature (Arrow et al. 1951) in our modeling of short-
ages. We assume that back orders are allowed, but instead
of penalizing stockouts by imposing a linear penalty cost
within the problem objective, we impose constraints on the
extent of backordering within the model constraints. Specif-
ically, we impose a constraint on the inventory fill rate,
which is defined as (Cachon and Terwiesch 2009) the ratio
of filled orders to the mean demand. Our model can be
interpreted as a form of service guarantee to customers.

Other service-constrained inventory models in the litera-
ture (e.g., Boyaci and Gallego 2001, Shang and Song 2006)
typically use the structural properties of the demand pro-
cess to approximate the service constraint by an appropriate
penalty cost within the objective. Such techniques are not
suitable for our model as the actual demand distribution is
unknown. See and Sim (2009) also study a robust single-
product, single-echelon, multiperiod inventory management
problem, but they also use a penalty cost instead of a ser-
vice constraint.2

Therefore, in our model, the inventory manager’s prob-
lem is to find ordering quantities in each period that

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 977

minimize the worst-case expected total ordering and hold-
ing cost over the finite horizon, and satisfy the fill rate
constraint in each period, as well as the other standard
inventory constraints. Through this example, we aim to
introduce various modeling constructs in ROME and show
how the ROME code is a natural expression of the model’s
algebraic formulation.

4.1.2. Parameters. We assume a finite planning hori-
zon of T periods, with an exogenous uncertain demand
in each period, modeled by a primitive uncertainty vector,
z̃ ∈ �T . The exact distribution of z̃ is unknown, but the
inventory manager has knowledge of some distributional
information that characterizes a family � of uncertainty dis-
tributions. In this example, the family � contains all distri-
butions � that have support on the hypercube 601 zMAX7T ,
have known mean Ì, and known covariance matrix è, rep-
resented as è= �L4�5L4�5′ for known model parameters
� and �. The lower triangular matrix L4�5 ∈ �T×T has
structure

L4�5=

1 0 0 · · · 0
� 1 0 · · · 0
� � 1 · · · 0
000

000
000

0 0 0
000

� � � 0 0 0 1

1

which represents an autoregressive model for demand, sim-
ilar to Johnson and Thompson (1975) and Veinott (1965),
to capture intertemporal demand correlation.

In each period t ∈ 6T 7, we denote by ct the unit order-
ing cost and the maximum order quantity by xMAX

t , with no
lead time for ordering. Leftover inventory at the end of each
period can be held over to the next period, with a per-unit
holding (overage) cost of ht . We assume no fixed cost com-
ponents to all costs involved. In each period, we denote the
minimum required fill rate by �t . Finally, we assume that
the goods have no salvage value at the end of the T peri-
ods, there is no starting inventory, and that the inventory
manager is ambiguity averse.

Table 1 lists several programming variables and the model
parameters that they represent. We assume for the rest of
this discussion that these variables have been declared and
assigned appropriate numerical values, because we will use
them within various code segments later.

4.1.3. Model. We begin by describing how uncertain-
ties are modeled. Formally, the family of distributions �
that contains the true distribution of the demand z̃ can be
characterized as

�=
{

�2 �
(

z̃ ∈ 601 zMAX7T
)

= 11E� 4z̃5=Ì1Cov� 4z̃5=è
}

0

In ROME, we model this by first declaring a programming
variable z that represents the uncertainty, and assigning var-
ious distributional properties to it.

27 newvar z(T) uncertain; % declare an uncertain demand
28 rome_constraint(z >= 0);
29 rome_constraint(z <= zMax); % set the support
30 z.set_mean(mu); % set the mean
31 z.Covar = S; % set the covariance

Code Segment 1: Specifying distributional properties on the
uncertain demand z̃.

Notice that the covariance matrix S is a numerical quantity
that can be constructed from alpha and sigma by appropri-
ate matrix operations.

We let xt4z̃5 be the decision rule that represents the order
quantity in period t. At the point of this decision, only
the demands in the first t − 1 periods have been realized.
Hence, xt4z̃5 should only be functionally dependent on the
first t − 1 values of z̃, and has corresponding information
index set 6t − 17. Recall that by our convention, 607 ≡ ∅.
Further, we let yt4z̃5 be the decision rule that represents the
inventory level at the end of period t. The corresponding
information index set for yt4z̃5 is 6t7. When the decision
rules are restricted to LDRs, for each t ∈ 6T 7, we require
xt ∈L411N 1 6t − 175 and yt ∈L411N 1 6t75.

In Code Segment 2, we show how to use ROME to
model the order quantity decision rule, x4z̃5. The inventory
level can be modeled in an identical way.

34 % allocate an empty variable array
35 newvar x(T) empty;
36 % iterate over each period
37 for t = 1:T
38 % construct the period t decision rule
39 newvar xt(1, z(1:(t-1))) linearrule;
40 x(t) = xt; % assign it to the tth entry of x
41 end

Code Segment 2: Constructing the order quantity decision
rule in ROME.

In MATLAB syntax, the colon “:” operator is used to con-
struct numerical arrays with fixed increments between its
elements. In particular, when a and b are MATLAB vari-
ables with assigned integer values with b not smaller than a,
the expression a : b returns an array with unit increments,

Table 1. List of programming variables and their asso-
ciated model parameters for the inventory
management problem.

Variable Model
name Size parameter Description

T 1 × 1 T Number of periods
zMax T× 1 zMAXe Support parameter for z̃
mu T×1 Ì Mean of z̃
sigma 1× 1 � Covariance parameter for z̃
alpha 1× 1 � Covariance parameter for z̃
S T× T è Covariance matrix of z̃
xMax T× 1 xMAX Order quantity upper limit
c T× 1 c Unit ordering cost
h T× 1 h Unit holding cost
beta T× 1 Â Target (minimum) fill rate

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
978 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

starting from a and ending at b. If b is (strictly) smaller
than a, the expression a : b returns an empty array.

The code segment begins declaring x as a size T empty
array, which we will later use to store the constructed deci-
sion rules. In each iteration of the for loop, we construct
a scalar-valued variable xt, which represents the period t
decision rule xt4z̃5. When t exceeds 1, the expression
z(1 : (t - 1)) extracts the first t - 1 components of z, which
specifies the information index set of xt. When t is exactly
equal to 1, the expression z(1 : (t - 1)) returns an empty
matrix, which indicates to ROME an empty information
index set. The next line stores the constructed decision rule
into the array x for later use.

As in standard inventory models, we have the inventory
balance constraints that describe the system dynamics. The
inventory level in period t+1 is the difference between the
period t inventory level (after ordering) and the period t
demand. The constraints may be written as

y14z̃5= x14z̃5− z̃1

yt4z̃5= yt−14z̃5+ xt4z̃5− z̃t ∀ t ∈ 821 0 0 0 T 9 0

Assuming that the programming variables x and y have
been previously declared and represent the order quantity
and inventory-level decision rules, respectively, Code Seg-
ment 3 shows how the balance constraints may be modeled
in ROME.

53 % Period 1 inventory balance
54 rome_constraint(y(1) == x(1) - z(1));
55 % iterate over each period
56 for t = 2:T
57 % period t inventory balance
58 rome_constraint(y(t) == y(t-1) + x(t) - z(t));
59 end

Code Segment 3: Modeling the inventory balance
constraints.

Similarly, the upper and lower limits on the order quantities
can be modeled by the constraints

0 6 xt4z̃56 xMAX
t ∀ t ∈ 6T 7 0

We may express this set of constraints in ROME as

62 rome_constraint(x >= 0); % order qty. lower limit
63 rome_constraint(x <= xMax); % order qty. upper limit

Code Segment 4: Modeling the limits on the order quantity.

Observe that the programming variables are vector val-
ued, and that the code segment imposes the inequality con-
straints component-wise.

The fill rate in a period t is defined (Cachon and Terwi-
esch 2009) as the ratio of expected filled orders to the mean
demand, where the sales in period t can be computed as the
minimum between the inventory level after ordering and
the demand in the same period. In our model, we desire to

meet the target (minimum) fill rate �t for all distributions
� ∈ �. Hence, the distributionally robust fill rate constraint
reads

inf�∈� EP4min 8yt−14z̃5+ xt4z̃51 z̃t95

�t

> �t

for each t ∈ 6T 7. Together with the inventory balance con-
straints, the fill rate constraints can be simplified to

sup
�∈�

EP44yt4z̃55
−56�t41 −�t51 ∀ t ∈ 6T 7 0

We notice that the right-hand side of the simplified inequal-
ity can be computed as a function of the model parameters.
On the left-hand side, we have a term that is the expected
positive part of an LDR. In a previous work (Goh and Sim
2010), we showed how such functions could be computed,
or at least bounded from above, given the distributional
properties of z̃. The algebraic formulations for these bounds
are typically quite messy, and dependent on the types of
distributional information of z̃ available. We refer interested
readers to Goh and Sim (2010) for the exact formulations.
In ROME, however, the complexity the bounds are hid-
den from the user, and we can model this constraint in
ROME as

65 % fill rate constraint
66 rome_constraint(mean(neg(y)) <= mu - mu .* beta);

Code Segment 5: Modeling the fill rate constraint.

Notice that the MATLAB operator .* represents an ele-
mentwise (Hadamard) product of two vectors.

Finally, the inventory manager’s objective in this prob-
lem is to minimize the worst-case expected total cost over
all the distributions in the family. In our model, the total
cost comprises the inventory ordering cost and the holding
cost. This can be expressed as

min sup
�∈�−

EP

(T
∑

t=1

ctxt4z̃5+

T
∑

t=1

hty
+

t 4z̃5
)

1

or more compactly, as min sup�∈� EP4c
′x4z̃5+ h′y+4z̃55. In

ROME, the objective function is modeled in a similarly
intuitive way. We model this in ROME by the statement

68 % model objective
69 rome_minimize(c’*mean(x) + h’*mean(pos(y)));

Code Segment 6: Modeling the inventory manager’s
objective.

Notice that in MATLAB syntax, the “ ’ ” symbol represents
the transpose of a vector.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 979

4.1.4. Solutions. After modeling the problem in
ROME, we can issue a call to either solve or solve_
deflected to instruct ROME to, respectively, solve the
problem using standard LDRs or BDLDRs. The computed
solutions can be extracted for further analysis using the
eval function. A sample numerical output (correspond-
ing to the parameter values used in the ROME code in
Appendix A) for the LDR describing the first two periods
of the order quantity is

57.000
0.000 + 1.000* z1

An electronic companion containing the appendices to
this paper is available as part of the online version at http://
or.journal.informs.org. Solving via BDLDRs, the sample
output for the first two periods of order quantities is
31.833
1.882 + 0.969* z1

+ 1.00(1.882 + 0.969* z1)^-
- 1.00(58.118 - 0.969* z1)^-

The above displays show sample “prettyprints” of how the
decision rules are output to the user and are useful for
human analysis and basic solution understanding. However,
this functionality clearly diminishes in utility for larger
and more complex problems. ROME provide the functions
(linearpart and deflectedpart) for users to extract the rel-
evant coefficients of the decision rules for numerical anal-
ysis, if desired. However, from a modeling perspective, the
numerical quantities of interest are often not the actual
coefficients, but rather the instantiated values of the deci-
sion rules for the realized uncertainties. This is best exem-
plified in the subsequent project-crashing modeling exam-
ple, and we will defer this discussion until later.

Finally, the optimized objective, which corresponds to
the worst-case total cost over the family of distributions,
can also be read from the ROME by calling the objective
function.

4.1.5. Remarks. Readers who are familiar with the
vectorized programming paradigm of MATLAB may find
our ROME model for the inventory management prob-
lem somewhat awkward because of the use of many loops
within the model. Although the model presented in this sec-
tion is less computationally efficient, we feel that it bears
stronger similarity to the algebraic formulation and has
value in its relative ease of understanding and implementa-
tion from a modeling standpoint.

If desired, the ROME modeling code can also be vector-
ized for computational efficiency. In particular, the inven-
tory balance constraint can be reformulated into a single
constraint involving a matrix-vector product. The decision
rules with their associated nonanticipative requirements can
be constructed without using loops as well, using the Pat-
tern option within their declaration, which specifies the
dependency pattern on the uncertainty vector using a log-
ical matrix. The User’s Guide to ROME (Goh and Sim

2009) contains a detailed description of how to use the
Pattern option, and Appendix B contains an example of a
vectorized ROME model for this problem.

4.2. Project Crashing

4.2.1. Description. In this example, we consider a dis-
tributionally robust version of the project-crashing prob-
lem. We refer readers to Kerzner (2009) and Klastorin
(2004) for a more complete introduction to the problem.
An activity-on-arc (AOA) project network is a represen-
tation of a project in a directed acyclic graph, with arcs
representing individual activities for the project. The topol-
ogy of the graph represents precedence constraints of the
various activities. We consider a model in which comple-
tion times of the individual activities are uncertain, but can
be expedited or crashed by deterministic amounts by com-
mitting additional resources to the activities. Herroelen and
Leus (2005) provide a comprehensive survey of the vari-
ous techniques for project scheduling for uncertain activity
times. In our model, we assume that the project manager’s
objective is to minimize the expected completion time of
the project, subject to a project budget constraint, which
effectively limits the amount of crashing.

A widely used technique for project analysis in practice
is PERT U.S. Navy (1958). PERT makes several strong
modeling assumptions and has consequently come under
strong criticism (e.g., Roman 1962, van Slyke 1963). An
alternative to PERT that avoids the distributional assump-
tion on the activity times is to formulate the problem as a
robust optimization problem (Cohen et al. 2007, Goh et al.
2010) to find the optimal crash amounts and activity start
times. We adopt the robust optimization formulation here
and show how ROME can be used to model and solve the
project-crashing problem.

This example demonstrates how ROME can be used to
model nonanticipative constraints over a network, and how
the optimization results of ROME can be extracted for
numerical analysis. In part, the latter consideration moti-
vated our decision to design ROME within the MATLAB
environment so that users can take advantage of the capa-
bilities of the host MATLAB environment for numerical
analysis and manipulation.

4.2.2. Parameters. Consider a project with N activi-
ties that have uncertain completion times represented by
an uncertainty vector z̃ ∈ �N . Again, we do not presume
exact knowledge of the actual distribution of z̃, but instead
assume that the true distribution belongs to a family of
distributions �, characterized by certain distributional prop-
erties. In particular, we assume that we know the mean
activity time vector Ì and covariance matrix è of the activ-
ity times. Moreover, we have accurate estimates of the
most optimistic activity times zL and the most pessimistic
activity times zH . These parameters form lower and upper
bounds of z̃, respectively.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
980 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

Table 2. List of programming variables and their asso-
ciated model parameters for the project-
crashing problem.

Variable Model
name Size parameter Description

N 1 x 1 N Number of activities, number of arcs
in network

M 1 x 1 M Number of nodes in network
zL N x 1 zL Optimistic activity completion time
zH N x 1 zH Pessimistic activity completion time
mu N x 1 Ì Mean activity time
Sigma N x T è Covariance matrix of activity time
c N x 1 c Crashing cost per unit time
u N x 1 u Crashing limit
B 1 x 1 B Project budget

The precedence relations in the network are described
by an AOA project network, with M nodes and N arcs.
We represent the graph topology by an incidence matrix
A ∈�M×N , which has components

Aik =

−1 if arc k leaves node i,
1 if arc k enters node i,
0 otherwise.

This representation is more natural for our model instead
of the 4V 1E5 representation or an adjacency matrix repre-
sentation, because it naturally preserves the integer indices
on the activities. In addition, we assume that the nodes are
indexed such that the starting node has index 1 and the
terminal node has index M .

For each activity k ∈ 6N 7, we denote the maximum
amount that it can be crashed by the parameter uk, and the
crashing cost per unit time by ck. The project budget is
denoted by B. Table 2 lists several programming variables
and the model parameters that they represent. We assume
for the rest of this discussion that these variables have
been declared and assigned appropriate numerical values,
because we will use them within various code segments
later.

4.2.3. Model. We begin by modeling the uncertainty z̃.
This follows an identical structure to the inventory man-
agement example. The family of uncertainty distributions
is formally described by

�= 8�2 � 4zL 6 z̃6 zH5= 11 E�4z̃5=Ì1 Cov�4z̃5=è9 1

The corresponding code in ROME is also identical in struc-
ture to the inventory management example, and we omit
displaying it here. For reference, we have included the full
algebraic model and ROME code in Appendix B.

Next, we let yk4z̃5 be the decision rule that represents
the crash amount for activity k. At the point of this deci-

sion, only the activities that precede activity k have been
completed. We can recursively construct the corresponding
information index set I ky . For any activity l ∈ 6N 7, define
the set

P4l5= 8l′ ∈ 6N 7 2 ∃i ∈ 6M7 2 Ail = −11 Ail′ = 19 1

which is the set of activity indices that immediately pre-
cede l. Then, we may recursively evaluate I ky as

I 1
y = ∅ and I ky =P4l5∪

⋃

k′∈P4l5

I k
′

y 1 (5)

which simply recursively includes all predecessors of k
into I ky . The ROME model for constructing the crash
amount LDR is almost identical to how the order quan-
tity LDR was constructed in the previous example, and is
shown below.

39 % y: crash amounts
40 newvar y(N) empty; % allocate an empty variable array
41 % iterate over each activity
42 for k = 1:N
43 % get indices of dependent activities
44 ind = prioractivities(k, A);
45 % construct the decision rule
46 newvar yk(1, z(ind)) linearrule;
47 % assign it to the kth entry of y
48 y(k) = yk;
49 end

Code Segment 7: Constructing the crash amount decision
rule in ROME.

Here, prioractivities is a function that implements
recursion (5) and returns the array ind, which contain the
indices of the dependent activities. The electronic com-
panion details the code for its implementation. The next
line then uses ind to index into the uncertainty vector z to
construct the dependencies of the kth activity, represented
by yk.

The remaining decision rule is xi4z̃5, for each node i
of the network, which represents the time of node i, or,
equivalently, the common start time of the activities that
exit node i. Its corresponding information index set, I ix, can
be constructed as

I ix =

{

I ky for any k such that Aik = −1 if i 6=M1

6N 7 if i =M0

Modeling this in ROME follows directly from the construc-
tion of y above.

The time evolution of the project is represented by the
inequality

xj4z̃5−xi4z̃5>4z̃k−yk4z̃55
+

∀k∈ 6N 71 Aik =−11 Ajk =11

which states that the difference in event times between two
nodes that are joined by an activity must exceed the activ-
ity time after accounting for the crash. The 4 · 5+ operation
is a statement that regardless of how much an activity is
crashed, it cannot have negative completion time. In ROME,

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 981

assuming that x and y have been properly constructed, we
can express this as

70 % iterate over each activity
71 for k = 1:N
72 ii = find(A(:, k) == -1); % activity k leaves node
73 jj = find(A(:, k) == 1); % activity k enters node
74 % make constraint
75 rome_constraint(x(jj) - x(ii) >= pos(z(k) - y(k)));
76 end

Code Segment 8: Expressing the project dynamics in
ROME.

The remaining constraints are, firstly, the limits on the
crash amounts, which are represented by the inequality
06 y4z̃56 u; secondly, the constraint that all times should
be nonnegative, which is represented by x4z̃5 > 0; and
finally, the requirement that the total crashing cost must
be within the budget, which is represented by c′y4z̃5 6 B.
These inequalities are easily expressed in ROME as

79 rome_box(y, 0, u); % crash limit
80 rome_constraint(x >= 0); % nonnegative time
81 rome_constraint(c’ * y <= B); % budget constraint

Code Segment 9: Project constraints in ROME.

Notice that we have used the contraction rome_box as a
convenient shorthand to express a constraint on a variable
having upper and lower limits.

The project completion time is simply the time of the ter-
minal node, xM4z̃5. The project manager aims to minimize
the worst-case expected completion time over the family of
distributions, sup�∈� EP4xM4z̃55. This can be expressed in
ROME using the code segment

83 % objective: minimize worst -case mean completion time
84 rome_minimize(mean(x(M)));

Code Segment 10: Minimizing the expected project com-
pletion time.

4.2.4. Solutions. Similar to the inventory management
example, we can use eval to return the optimized LDR
or BDLDR after solving. For example, using the numer-
ical instance of the project-crashing problem described in
Appendix B, the LDR solution that represents the crash
amounts, y4z̃5, has the displayed output
y_sol =
2.000
1.000
1.000
0.381 + 0.262* z1
0.195 - 0.020* z1
1.021 - 0.004* z3
0.289 + 0.033* z1 + 0.054* z4
2.500 - 0.250* z1 + 0.000* z2

- 0.000* z3 + 0.000* z5 - 0.000* z6
0.529 + 0.094* z3

which also can be used to verify that y does indeed satisfy
the nonanticipative constraints, which is more complicated

than the multistage nonanticipativity seen in the inventory
management example.

Recall that in our model we solve for the worst-case dis-
tribution over a family of distributions. A question that is
of both theoretical and practical interest is how the decision
rules perform for specific distributions. From a theoretical
perspective, if we can find a distribution that attains the
worst case, then we know that the bound is tight and cannot
be further improved. From a practical standpoint, if we do
indeed have an accurate estimate of the activity time distri-
bution, we may want to measure how well the worst-case
optimized decision rules perform against this distribution.

In the numerical instance in Appendix B, we have used
mean and covariance parameters such that an independent
uniform distribution on the support of z̃ is a possible dis-
tribution in �. We can then generate these independent uni-
forms and instantiate the decision rules and the objective to
evaluate their performance on this specific distribution. For
example, if we want to study the statistics of the project
expenditure, we would use the following code segment

93 Nsims = 10000; % number of simulation runs
94 expenditure = zeros(Nsims , 1); % allocate array
95 for ii = 1:Nsims
96 % simulate activity times
97 z_vals = zL + (zH - zL) .* rand(N, 1);
98 % instantiate crash costs
99 expenditure(ii) = c’ * y_sol.insert(z_vals);

100 end

Code Segment 11: Example of instantiating decision rules
with uncertainty realizations.

Notice that MATLAB’s in-built zeros function creates an
array of all zeros, which we use to store the computed
expenditures. The rand function generates an array of N
independent uniform random 60117 numbers that we shift
and scale to get the simulated activity times.

The key ROME functionality used here is the insert
function, which instantiates the LDR solution with the
uncertainties. The project expenditure in simulation run is
the inner product of the unit cost vector, c, with the result
of the y_sol.insert(z_vals), which is a numerical vector.
The computed expenditure is then stored in the expendi-
ture array and can be used for various numerical analy-
sis. As an example, in this particular instance we can find
that using LDRs, the 95% confidence interval of the mean
expenditure is 490607219061255, whereas if BDLDRs are
used, the 95% confidence interval of the mean expenditure
is 490878119088635.

4.2.5. Remarks. ROME can also model several vari-
ants of the project-crashing model presented here. For
example, we could minimize the expected project-crashing
cost, subject to a constraint on the project completion
deadline. Alternatively, if appropriate linear penalty cost
parameters can be associated with late completion, we
could instead minimize the expected total (crashing and

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
982 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

penalty) cost in the objective. Finally, instead of mini-
mizing expected costs, we could also minimize worst-case
costs, as in the model of Cohen et al. (2007).

4.3. Robust Portfolio Selection

4.3.1. Description. In this section, we consider the
problem of robust portfolio selection. Markowitz (1952,
1959) pioneered the use of optimization to handle the trade-
off between risk and return in portfolio selection, and to
solve this problem, introduced the (now classical) technique
of minimizing portfolio variance, subject to the mean port-
folio return attaining the target. However, various authors
have indicated several problems with using variance as a
measure of risk, namely, that this approach is only appro-
priate if the returns distribution is elliptically symmetric
(Tobin 1958 and Chamberlain 1983).

A risk metric that overcomes many of the shortcom-
ings of variance is the Conditional Value-at-Risk (CVaR)
risk metric popularized by Rockafellar and Uryasev (2000).
CVaR satisfies many desirable properties of a risk mea-
sure, qualifying it as a coherent measure of risk (Artzner
et al. 1999). CVaR is a measure of tail risk, measuring the
expected loss within a specified quantile. In this example,
we will use CVaR as our objective for the portfolio opti-
mization. In addition, we will require that the optimized
portfolio has a mean return above a prespecified target,
and study how the characteristics of the optimal portfolio
changes as the target return level varies. In particular, we
will investigate how the coefficient of variation (CV) of
the optimized portfolio return varies with the target return
level. We will assume that no short-selling is permitted, and
we also make the standard assumption that the assets are
traded in a frictionless market (i.e., a fully liquid market
with no transaction costs).

In this example, we aim to show how ROME can be used
to study robust optimization problems that do not ostensibly
require decision rules, how ROME models can be devel-
oped in a modular manner by writing custom functions,
and finally, how a ROME model can be easily embedded
as components of a larger program.

4.3.2. Parameters. We let N denote the total number
of assets available for investment. The drivers of uncer-
tainty in this model are the asset returns, which we denote
by the uncertainty vector r̃ ∈ �N . We do not presume to
know the precise distribution of r̃ ∈ �N , but instead, we
assume that we have accurate estimates of the asset return
means Ì and covariance matrix è, which characterizes a
family of distributions �.

A key exogenous parameter is the CVaR-level, �, which
specifies the quantile over which the conditional expected
loss is computed. Typical values of � are 95%, 98%, or
99%. In addition, we let 6�L1�H 7 represent the range of tar-
get returns that we search over. For a fixed target return � ∈

6�L1�H 7, the portfolio manager’s problem is to find a portfo-
lio allocation that has a mean return above � , and minimizes

Table 3. List of programming variables and their associ-
ated model parameters for the inventory man-
agement problem.

Variable Model
name Size parameter Description

N 1 x 1 N Number of assets
mu N x 1 Ì Mean return
Sigma N x T è Covariance matrix returns
beta 1 x 1 � CVaR-level
tL 1 x 1 �L Lower limit of target return
tH 1 x 1 �H Upper limit of target return

the worst �-CVaR over all uncertainty distributions within
�. Table 3 lists several programming variables and the model
parameters that they represent. We assume for the rest of
this discussion that these variables have been declared and
assigned appropriate numerical values, because we will use
them within various code segments later.

4.3.3. Model. In this model, the portfolio manager’s
decision is a vector x ∈ �N , with the ith component rep-
resenting the fraction of the net wealth to be invested in
asset i. Because we do not consider any dynamics in this
problem, the primary decision rule x is a standard vector-
valued decision variable in this problem.

For a fixed �, and known distribution �, letting the port-
folio loss as a function of the decision be represented by
˜̀4x5 = −r̃′x, the �-quantile of the loss distribution can be
found via

��4x5= min8v ∈�2 �4 ˜̀4x56 v5> �90

Therefore, 1 − � represents the probability that the loss
exceeds ��4x5. The �-CVaR is defined as the conditional
loss, given that the loss exceeds ��4x5. This is in turn
found via

CVaR�4x5= Ɛ�4 ˜̀4x5 � ˜̀4x5> ��4x550

Rockafellar and Uryasev (2000, Theorem 1) show that the
expression CVaR can be written in a more amenable form
for optimization,

CVaR�4x5= min
v∈�

{

v+
1

1 −�
Ɛ�

(

˜̀4x5− v
)+

}

0

In our distributionally robust setting, we consider the worst-
case CVaR over all distributions � within the family �, and
we get

CVaR�4x5= min
v∈�

{

v+
1

1 −�
sup
�∈�

EP4
(

˜̀4x5− v
)+

5

}

0 (6)

We can encapsulate this within a function:

6 function cvar = CVaR(loss , beta)
7 newvar v; % declare an auxilliary variable v
8 cvar = v + (1 / (1 - beta)) * mean(pos(loss - v));

Code Segment 12: Implementing a custom CVaR function
in ROME.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 983

Therefore, for a fixed � ∈ 6�L1�H 7, the �-CVaR minimiz-
ing portfolio, denoted by x∗4�5, solves

min
x

CVaR�4−r̃′x5

s.t. Ì′x > �

e′x = 1

x > 00

(7)

The first constraint represents the requirement that the opti-
mized portfolio must have a mean return above � . The
second constraint is simply a normalization. Because x
is a vector whose components represents fractions of net
wealth, its components must sum to 1. Finally, the last con-
straint is simply a statement of the modeling assumption
that short sales are not permitted.

This can be modeled in ROME as

9 function x_sol = optimizeportfolio (N, mu, Sigma , ...
10 beta , tau)
11
12 % begin the ROME environment
13 h = rome_begin(’Portfolio Optimization ’);
14
15 newvar r(N) uncertain; % declare r as uncertainty
16 r.set_mean(mu); % set mean
17 r.Covar = Sigma; % set covariance
18
19 % declare a nonnegative variable x
20 newvar x(N) nonneg;
21
22 % objective: minimize CVaR
23 rome_minimize(CVaR(-r’ * x, beta));
24 % mean return must exceed tau
25 rome_constraint(mu’ * x >= tau);
26 % x must sum to 1
27 rome_constraint(sum(x) == 1);
28
29 % solve the model
30 h.solve_deflected;
31
32 % check for infeasibility / unboundedness
33 if(isinf(h.objective))
34 x_sol = []; % assign an empty matrix
35 else
36 x_sol = h.eval(x); % get the optimal solution
37 end
38 rome_end; % end the ROME environment

Code Segment 13: Portfolio optimization example in
ROME.

The CV is a dimensionless measure of variability of the
optimized portfolio return and is defined as the ratio of its
standard deviation to its mean. As a function of � , it is
formally defined as

CV4�5≡

√

x∗4�5′èx∗4�5

Ì′x∗4�5
0 (8)

To investigate how the CV changes for � ∈ 6�L1�H 7, we can
simply compute the CV for a uniform sample of � within
this range, and plot the ensuing CV against � . This can be
done by the following code segment.

15 Npts = 200; % number of points in to plot
16 cv = zeros(Npts , 1); % allocate result array
17
18 % array of target means to test
19 tau_arr = linspace(0, tH, Npts);
20
21 for ii = 1:Npts
22 % Find the CVaR -optimal portfolio
23 x_sol = optimizeportfolio(N, mu, Sigma , ...
24 beta , tau_arr(ii));
25
26 % Store the coeffients of variation
27 if(isempty(x_sol))
28 cv(ii) = Inf;
29 else
30 cv(ii) = sqrt(x_sol ’*Sigma*x_sol) / (mu ’*x_sol);
31 end
32 end
33
34 plot(tau_arr , cv); % plot CV against tau
35 xlabel(’\tau’); ylabel(’CV’); % label axes
36 title(’Plot of CV vs \tau’); % label graph

Code Segment 14: Plotting the CV of �-CVaR optimized
portfolio against � .

In the previous code segment, linspace(0, tH, Npts) is a
MATLAB in-built function that returns an array with Npts
elements with equal consecutive differences, starting with
the element 0 and ending with tH.

5. ROME’s Scope
In the previous section, we discussed how ROME can be
used in several example applications in different areas of
operations research. In this section we formally establish
ROME’s scope and the class of problems that it can model
and solve.

We denote by z̃ an N -dimensional vector of uncertain-
ties, defined on the probability space 4ì1F1�5. We do
not assume that the uncertainty distribution � is precisely
known, but instead, we may have knowledge of certain dis-
tributional properties of z̃, namely, its support, mean sup-
port, covariance matrix, and upper bounds on its directional
deviations (introduced by Chen et al. 2007). The presence
of these properties serve to characterize a family of distri-
butions, which we generally denote by �, that contains the
actual distribution �.

The decision variables in our framework comprise x, an
n-dimensional vector of decisions to be made before the
realization of any of the uncertainties, as well as a set
of K vector-valued decisions rules yk4 · 5, with image in
�mk for each k ∈ 6K7. We assume that we are given as
parameters the information index sets 8Ik9

K
k=1, where Ik ⊆

6N 7 ∀k ∈ 6K7. To model the nonanticipative requirements,
we require that the decision rules belong to the sets yk ∈

Y4mk1N 1 Ik51 ∀k ∈ 6K7, where Y is the set of nonantici-
pative decision rules as defined in (3).

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
984 Operations Research 59(4), pp. 973–985, © 2011 INFORMS

The general model that we consider is then

Z∗

GEN = min
x1 8yk4·59Kk=1

c0 ′
x+ sup

�∈�−
EP

(K
∑

k=1

d01 k ′
yk4z̃5

)

s.t.cl
′
x+ sup

�∈�−
EP

(K
∑

k=1

dl1 k ′
yk4z̃5

)

6 bl

∀ l ∈ 6M7 (9)

T4z̃5x+

K
∑

k=1

Ukyk4z̃5= v4z̃5

yk 6 yk4z̃56 ȳk ∀k ∈ 6K7

x > 0

yk ∈Y4mk1N 1 Ik5 ∀k ∈ 6K7 0 (10)

We note that for each l ∈ 809∪ 6M7 and k ∈ 6K7, the quan-
tities bl1 c

l1dl1 k1Uk, and Ik are model parameters which
are precisely known. Similarly, T4z̃5 and v4z̃5 are model
parameters that are assumed to be affinely dependent on
the underlying uncertainties. The upper and lower bounds
on the recourse variable yk4 · 5, respectively denoted by ȳk

and yk, are also model parameters that are possibly infinite
componentwise.

Notice that in ROME we do not solve (9) exactly, but
instead solve for optimized decision rules residing in struc-
tured subsets of Y, corresponding to a restriction of (9).
This is because although problem (9) is quite general, it
is also unfortunately computationally intractable in most
cases (see Ben-Tal et al. 2004 or Shapiro and Nemirovski
2005 for a more detailed discussion). The set of LDRs, L,
defined in (4), is the default subset of Y used in ROME. If
desired, at the expense of a typically minor computational
cost, users can also choose to solve for BDLDRs, which
reside in a larger subset of Y.

6. Conclusion
In this paper, we have introduced ROME, a MATLAB-
based robust optimization modeling toolbox, and
demonstrated its utility in modeling robust optimization
problems. Through the three modeling examples discussed
in this paper, we have introduced ROME’s key features,
and we have demonstrated how ROME allows users to
model otherwise complex problems with relative ease, in a
mathematically intuitive manner. In addition, through the
final portfolio optimization example, we have also demon-
strated how ROME might be integrated into a sample
application. We believe that ROME can be a helpful and
valuable tool for further academic and industrial research
in the field of robust optimization.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. Freely available for academic use from http://www

.robustopt.com
2. ROME code for both their model and ours

can be freely obtained from http://www.robustopt.com/
examples.html

Acknowledgments
The authors thank the associate editor and the anonymous
referees for their comments and critique on the first ver-
sion of this paper. They are also especially grateful for the
detailed comments by Area Editor Robert Fourer for his
detailed feedback on the first version of this paper. Their
feedback has allowed the authors to significantly improve
the structure and quality of this paper.

References
Arrow, K. J., T. Harris, J. Marschak. 1951. Optimal inventory policy.

Econometrica 19(3) 250–272.
Artzner, P., F. Delbaen, J. M. Eber, D. Heath. 1999. Coherent measures

of risk. Math. Finance 9(3) 203–228.
Baotic, M., M. Kvasnica. 2006. CPLEXINT—MATLAB interface for the

CPLEX solver. Accessed August 9, 2011, http://control.ee.ethz.ch/
∼hybrid/cplexint.php.

Ben-Tal, A., A. Nemirovski. 1998. Robust convex optimization. Math.
Oper. Res. 23(4) 769–805.

Ben-Tal, A., S. Boyd, A. Nemirovski. 2006. Extending scope of robust
optimization: Comprehensive robust counterparts of uncertain prob-
lems. Math. Programming Ser. B 107(1–2) 63–89.

Ben-Tal, A., A. Goryashko, E. Guslitzer, A. Nemirovski. 2004. Adjustable
robust solutions of uncertain linear programs. Math. Programming
99(2) 351–376.

Bertsimas, D., M. Sim. 2004. The price of robustness. Oper. Res. 52(1)
35–53.

Bertsimas, D., D. A. Iancu, P. A. Parrilo. 2010. Optimality of affine poli-
cies in multistage robust optimization. Math. Oper. Res. 35(2) 363–
394.

Boyaci, T., G. Gallego. 2001. Serial production/distribution systems under
service constraints. Manufacturing Service Oper. Management 3(1)
43–50.

Breton, M., S. El Hachem. 1995. Algorithms for the solution of stochastic
dynamic minimax problems. Comput. Optim. Appl. 4 317–345.

Brooke, A., D. Kendrick, A. Meeraus, R. Raman. 1997. GAMS Language
Guide. Release 2.25. GAMS Development Corporation, Washington,
DC.

Cachon, G., C. Terwiesch. 2009. Matching Supply with Demand: An Intro-
duction to Operations Management. McGraw-Hill, Boston.

Chamberlain, G. 1983. A characterization of the distributions that imply
mean-variance utility functions. J. Econom. Theory 29(1) 185–201.

Chen, X., Y. Zhang. 2009. Uncertain linear programs: Extended affinely
adjustable robust counterparts. Oper. Res. 57(6) 1469–1482.

Chen, X., M. Sim, P. Sun. 2007. A robust optimization perspective on
stochastic programming. Oper. Res. 55(6) 1058–1071.

Chen, X., M. Sim, P. Sun, J. Zhang. 2008. A linear decision-based
approximation approach to stochastic programming. Oper. Res. 56(2)
344–357.

Cohen, I., B. Golany, A. Shtub. 2007. The stochastic time-cost tradeoff
problem: A robust optimization approach. Networks 49(2) 175–188.

Delage, E., Y. Ye. 2010. Distributionally robust optimization under
moment uncertainty with application to data-driven problems. Oper.
Res. 58(3) 595–612.

Dupačová, J. 1987. The minimax approach to stochastic programming and
an illustrative application. Stochastics 20(1) 73–88.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Goh and Sim: Robust Optimization Made Easy with ROME
Operations Research 59(4), pp. 973–985, © 2011 INFORMS 985

Dupačová, J. 2001. Stochastic programming: Minimax approach.
C. Floudas, P. Pardalos, eds. Encyclopedia of Optimization, Vol. 5.
Kluwer Academic Publishers, Norwell, MA, 327–330.

Fourer, R., L. Lopes. 2006. A management system for decompositions in
stochastic programming. Ann. Oper. Res. 142 99–118.

Fourer, R., L. Lopes. 2009. StAMPL: A filtration-oriented modeling tool
for multistage stochastic recourse problems. INFORMS J. Comput.
21(2) 242–256.

Fourer, R., D. M. Gay, B. W. Kernighan. 1990. A modeling language for
mathematical programming. Management Sci. 36(5) 519–554.

Fourer, R., D. M. Gay, B. W. Kernighan. 2002. AMPL: A Modeling Lan-
guage for Mathematical Programming. Duxbury Press, Brooks/Cole
Publishing, Pacific Grove, CA.

Goh, J., M. Sim. 2009. User’s Guide to ROME. Accessed August 9, 2011,
http://www.robustopt.com/references/ROME_Guide_1.0.pdf.

Goh, J., M. Sim. 2010. Distributionally robust optimization and its
tractable approximations. Oper. Res. 58(4) 902–917.

Goh, J., N. G. Hall, M. Sim. 2010. Robust optimization strategies for total
cost control in project management. Working paper, NUS Business
School, Singapore.

Grant, M., S. Boyd. 2008. Graph implementations for nonsmooth convex
programs. V. Blondel, S. Boyd, H. Kimura, eds. Recent Advances
in Learning and Control (a Tribute to M. Vidyasagar). Springer,
New York, 95–110.

Grant, M., S. Boyd. 2011. CVX: MATLAB software for disciplined con-
vex programming (Web page, software). Retrieved August 9, 2011,
http://cvxr.com/cvx.

Herroelen, W., R. Leus. 2005. Project scheduling under uncertainty: Sur-
vey and research potentials. Eur. J. Oper. Res. 165 289–306.

Holmström, K. 1999. The TOMLAB optimization environment in MAT-
LAB. Adv. Model. Optim. 1(1) 47–69.

IBM. 2011. IBM ILOG CPLEX. Accessed August 9, 2011, http://www
-01.ibm.com/software/integration/optimization/cplex-optimizer.

Johnson, G. D., H. E. Thompson. 1975. Optimality of myopic inventory
policies for certain dependent demand processes. Management Sci.
21(11) 1303–1307.

Kaut, M., A. King, T. H. Hultberg. 2008. A C++ modelling environment
for stochastic programming. Technical report, IBM, New York.

Kerzner, H. 2009. Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 10th ed. Wiley, Hoboken, NJ.

Klastorin, T. D. 2004. Project Management: Tools and Trade-Offs, 1st ed.
Wiley, Hoboken, NJ.

Löfberg, J. 2004. YALMIP: A toolbox for modeling and optimization in
MATLAB. IEEE Internat. Sympos. Comput. Aided Control Systems
Design, Taiwan.

Löfberg, J. 2008. Modeling and solving uncertain optimization problems
in YALMIP. Proc. 17th World Congress: The Internat. Federation of
Automatic Control, Seoul, Korea.

Markowitz, H. M. 1952. Portfolio selection. J. Finance 7 77–91.
Markowitz, H. M. 1959. Portfolio Selection: Efficient Diversification of

Investments. John Wiley & Sons, New York.
MOSEK ApS. The MOSEK optimization software. Accessed August 9,

2011, http://www.mosek.com.
Rockafellar, R. T., S. Uryasev. 2000. Optimization of conditional value-

at-risk. J. Risk 2 493–517.
Roman, D. D. 1962. The PERT system: An appraisal of program evalua-

tion review technique. J. Acad. Management 5(1) 57–65.
See, C.-T., M. Sim. 2009. Robust approximation to multiperiod inventory

management. Oper. Res. 58(3) 583–594.
Shang, K. H, J. S. Song. 2006. A closed-form approximation for serial

inventory systems and its application to system design. Manufactur-
ing Service Oper. Management 8(4) 394–406.

Shapiro, A., S. Ahmed. 2004. On a class of minimax stochastic programs.
SIAM J. Optim. 14(4) 1237–1249.

Shapiro, A., A. Kleywegt. 2002. Minimax analysis of stochastic programs.
Optim. Methods Software 17(3) 523–542.

Shapiro, A., A. Nemirovski. 2005. On complexity of stochastic program-
ming problems. V. Jeyakumar, A. Rubinov, eds. Continuous Opti-
mization. Springer, New York, 111–146.

Soyster, A. L. 1973. Convex programming with set-inclusive constraints
and applications to inexact linear programming. Oper. Res. 21(5)
1154–1157.

Tobin, J. 1958. Liquidity preference as behavior toward risk. Rev. Econom.
Stud. 25 65–85.

Toh, K., M. Todd, R. Tütüncü. 1999. SDPT3—A MATLAB software
package for semidefinite programming. Optim. Methods Software 11
545–581.

U.S. Navy. 1958. PERT summary report, phase I. Technical report, Special
Projects Office, Bureau of Naval Weapons, Washington, DC.

Valente, C., G. Mitra, M. Sadki, R. Fourer. 2009. Extending algebraic
modelling languages for stochastic programming. INFORMS J. Com-
put. 21(1) 107–122.

Van Slyke, R. M. 1963. Monte Carlo methods and the PERT problem.
Oper. Res. 11(5) 839–860.

Veinott, A. 1965. Optimal policy for a multi-product, dynamic, nonsta-
tionary inventory problem. Management Sci. 12(3) 206–222.

Žáčková, J. 1966. On minimax solution of stochastic linear programming
problems. Časopis pro Pěstování Matematiky 91(4) 423–430.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

